If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (2x2)(3x2 + 5x + -4) = 0 Remove parenthesis around (2x2) 2x2(3x2 + 5x + -4) = 0 Reorder the terms: 2x2(-4 + 5x + 3x2) = 0 (-4 * 2x2 + 5x * 2x2 + 3x2 * 2x2) = 0 (-8x2 + 10x3 + 6x4) = 0 Solving -8x2 + 10x3 + 6x4 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2x2'. 2x2(-4 + 5x + 3x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}Subproblem 2
Set the factor '(-4 + 5x + 3x2)' equal to zero and attempt to solve: Simplifying -4 + 5x + 3x2 = 0 Solving -4 + 5x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + 1.666666667x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + 1.666666667x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + 1.666666667x + x2 = 0 + 1.333333333 1.666666667x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 1.666666667x + x2 = 1.333333333 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 1.333333333 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 1.333333333 + 0.6944444447 Combine like terms: 1.333333333 + 0.6944444447 = 2.0277777777 0.6944444447 + 1.666666667x + x2 = 2.0277777777 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 2.0277777777 Calculate the square root of the right side: 1.424000624 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 1.424000624 and -1.424000624.Subproblem 1
x + 0.8333333335 = 1.424000624 Simplifying x + 0.8333333335 = 1.424000624 Reorder the terms: 0.8333333335 + x = 1.424000624 Solving 0.8333333335 + x = 1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.424000624 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.424000624 + -0.8333333335 x = 1.424000624 + -0.8333333335 Combine like terms: 1.424000624 + -0.8333333335 = 0.5906672905 x = 0.5906672905 Simplifying x = 0.5906672905Subproblem 2
x + 0.8333333335 = -1.424000624 Simplifying x + 0.8333333335 = -1.424000624 Reorder the terms: 0.8333333335 + x = -1.424000624 Solving 0.8333333335 + x = -1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.424000624 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.424000624 + -0.8333333335 x = -1.424000624 + -0.8333333335 Combine like terms: -1.424000624 + -0.8333333335 = -2.2573339575 x = -2.2573339575 Simplifying x = -2.2573339575Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.5906672905, -2.2573339575}Solution
x = {0, 0.5906672905, -2.2573339575}
| 10x+12=-6x-4 | | 5x+29(x-4)=394 | | 4586=165x+2771 | | 6w+10w^2=0 | | 5576=165x+2771 | | 5z-34=-z | | 6(x+6)=12+2x | | 0.7x+0.4(10)=0.5(x+30) | | 24r^2-150=0 | | x(x+1)-x(x-1)= | | 8x+2x-10=4(2x+x) | | .10c+12=.12c+10 | | 8x+19=5x+7 | | -5(v+3)+3v+6=5v+11 | | 8[5-1]=0 | | 3x+3y-5=4 | | 6x^2-13-15=0 | | -8n(n+7)=8n-40 | | 2x+48=24y | | 4(2x+1)-(4x+1)=5+x | | 19(v+2)-3v=4(4v+3)-19 | | 2(n+2)=14+4n | | -16+4x=-3(6-x) | | 6x=9-6(x+1) | | 2x+2x-15=0 | | 5x^2+60x=-125 | | -2(7+7a)=30-3a | | 4(-1-a)=-7a+14 | | 1.16666667y-12=-5 | | 1+5(x+3)=26 | | 28xy^2z^4+30yz=2yxz(14yz^3+15) | | -38+8r=3r-2(5-6r) |